Biomedicine Environmental Nanotechnology

FACULTY	HEALTH SCIENCES				
DEPARTMENT	NURSING				
LEVEL OF	UNDERGRADUATE				
EDUCATION					
LESSON CODE			SEMESTER	5 th	
	0805.5.011.0		OF STUDIES	5	
COURSE TITLE	BIOMEDICINE ENVIRONMENTAL NANOTECHNOLOGY				
SELF-ENDED TEACHING ACTIVITIES			HOURS OF TEACHING / WEEK	CREDIT UNITS	
Theory			1		
Coaching school					
Laboratory			1		
Clinical exercise					
Total			2	3	
COURSE TYPE:			ELECTIVE COMPULSORY		
PREREQUISITE COURSES:			NO		
LANGUAGE OF TEACHING and			Greek		
EXAMINATIONS:					
THE COURSE IS OFFERED TO			NO		
ERASMUS STUDENTS:					
WEBSITE COURSE			https://eclass.hmu.gr/courses/NURS228/		

Learning results

The course aims to introduce students in a niche technology related to the development of polymeric composites incorporating nanomaterials, ideal for biomedical and/or environmental applications, including innovative drug delivery systems, tissue engineering, bioprinting, development of antipathogen coatings, surgical implants and medical equipment monitoring in health and therapeutic structures. In addition, the students will learn about water filtration and treatment technologies (desalination and pharmaceutical wastes adsorption), air purification technologies, as well as their impact on human health.

After completing the course, students will be able to:

- understand the materials' properties in nanoscale and their applicability towards the improvement of conventional medical monitoring applications and diseases treatment
- categorize nanostructured materials depending on their properties
- know the existence of novel advanced materials and the capability of incorporation in biomedical applications, including innovative drug delivery systems, tissue engineering, bioprinting, development of antipathogen coatings, surgical implants and medical equipment monitoring in health and therapeutic structures
- know innovative techniques against various cancer types

- describe the fundamentals and the experimental route of hybrid drug delivery and targeted release nanosystems development and to anticipate their benefits against the conventional ones
- know simple and more complicated *in vivo* and *in vitro* evaluation techniques in terms of materials' biocompatibility/toxicity
- develop polymeric nanocomposites for biomedical and environmental applications
- describe novel water and air purification and treatment techniques, as well as the impact on human health
 General Skills

Search, analysis and synthesis of data and information using the appropriate technology; Adaptability in new situations; Decision making; autonomous working skills; collaborative working skills; Working under an international environment; Working under an interdisciplinary environment; New ideas production; Projects' design and management; Respect in nature; provision of independent and critical thinking
Course content - Theory outline

Course content - Theory outline			
1 st week	Introduction to the history of Biomedical Science and Technology		
2 nd week	Introduction to Polymers - classification - Biopolymers		
3rd week	Introduction to Nanomaterials		
4 th week	Novel 2D/layered Materials of interest properties – Incorporation in biomedical applications		
5 th week	Spectroscopic and other characterization techniques of nanomaterials and composites		
6 th week	Biocompatibility – Toxicity and characterization Techniques (in vitro, in vivo)		
7 th week	Nanocomposites development – Techniques		
8 th week	Regulation factors of the properties of nanocomposites		
9 th week	Innovative biomedical applications incorporating nanomaterials - bioimplants (Nanomaterials for diagnosis and treatment of cancer, tissue engineering and 3D bioprinting, drug delivery systems		
10 th week	Innovative environmental applications incorporating nanomaterials		
11 th week	Water desalination/treatment technologies and pharmaceutical wastes adsorption		
12 th week	Air purification technologies – Impact on human health		
13th week	Recycling – reuse – environmental fingerprint/impact on human health		
	Course content - Lab outline		
1 st week	Familiarization with the lab equipment – Safety and hygiene		
2 nd week	Preparation – Materials, reagents and standard samples handling and management - Samples labeling/encoding – Storage conditions		
3 rd week	Development of aqueous dispersion – stabilization – Determination of the concentration by physical and spectroscopic techniques		
4 th week	2D materials modification using natural products		
5 th week	Polymeric nanocomposites development techniques, coatings and thin films		
6 th week	Fundamentals of spectroscopic characterization of biocompatible materials		
7 th week	Hydrogels development – regulation of the composition		
8 th week	In vivo – in vitro biocompatibility evaluation techniques – Materials toxicity		
9 th week	Implants development by 3D printing		
10 th week	Development of air purification antibacterial filters		
11 th week	Development of water purification/treatment filters		
12 th week	Water quality evaluation		

TEACHING and LEARNING METHODS - EVALUATION				
TEACHING METHOD	Theory1) Traditional lectures using power-point software2) Video conference3) Discussion with students			
	Lab 4) In person 5) Execution/demonstration of experiments			
USE OF INFORMATION AND	Slides show. Video view. Use of the e-class electronic platform to store presentations in digital format for easy access by students. Communication with students on issues related to the educational process through the same platform			
COMMUNICATION TECHNOLOGIES	students on issues related to the educational process through the same platform			
TEACHING ORGANIZATION	ActivitySemester workload 90Lectures (total 13x1)Lab (Total 13x1)Total course (13x2) = 26			
STUDENT EVALUATION	 Η τελική βαθμολογία του μαθήματος: 1) 40% from a written final exam in theory content 2) 40% from a written final exam in Lab content 3) 20% from a bibliographic homework 			

RECOMMENDED BIBLIOGRAPHY (into Greek language)

THEORY

- 1. Electronic teacher's notes on e-class
- 2. Τυποποιημένες ασκήσεις του διδάσκοντα
- 3. Malsch, N.H., "Biomedical Nanotechnology", CRC Press. (2005)
- 4. Mirkin, C.A. and Niemeyer, C.M., "Nanobiotechnology II: More Concepts and Applications", Wiley-VCH. (2007)
- 5. Lamprecht, A., "Nanotherapeutics: Drug Delivery Concepts in Nanoscience", Pan Stanford Publishing Pte. Ltd. (2009)

LAB

- 1) Electronic teacher's notes on e-class
- 2) Recommended manuals